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Resonance Frequencies Calculated Efficiently With
the Frequency-Domain TLM Method
Jan Hesselbarth, Associate Member, IEEE, and Rüdiger Vahldieck, Fellow, IEEE

Abstract—An algorithm is presented for the calculation of eigen-
resonances using the frequency-domain TLM method. It is based
on sparse matrices and allows the computationally efficient treat-
ment of large structures. The numerical effort and the accuracy of
the solutions are discussed using two example structures.

Index Terms—Eigenvalues and eigenfunctions, frequency
domain analysis, microwave resonators, transmission line matrix
methods.

I. INTRODUCTION

I N THE FIELD of microwave circuit design, the determina-
tion of resonance modes and quality factors of resonators is a

standard though sometimes difficult task. Utilizing a numerical
method will usually lead to an eigenvalue problem. Recently,
efficient methods have been developed to solve large linear,
sparse eigenvalue problems [1]. Still, the number of unknowns
is limited and the numerical cost is often rather large. Therefore,
the numerical method used to approximate the electromagnetic
fields in the resonator should give as accurate results as possible
for the smallest number of unknowns. Furthermore, the numer-
ical cost of actually finding a resonance mode with a certain
accuracy has to be analyzed carefully.

In the following, the frequency-domain transmission-line ma-
trix (FDTLM) method [2], [3] is used for analyzing resonators
in terms of resonance frequencies and -factors. A matrix algo-
rithm is discussed which leads to a standard sparse eigenvalue
problem. This eigenvalue problem is particularly easy to solve
due to a specific feature of the FDTLM approach.

II. FDTLM METHOD

In the FDTLM method, a brick-shaped homogeneous part of
the computational domain is represented by the symmetrical
condensed node (SCN) [4]. The SCN is mathematically de-
scribed by a node scattering matrix of size 12 12 relating
a vector of incident voltage waves and a vector of reflected
voltage waves. The combination of the node scattering matrices
of all SCN in the computational domain in the block-diagonal
matrix leads to

(1)
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Hereby, is a square matrix of size 12 , where
denotes the number of SCN. The connection matrix connects
neighboring SCN’s and boundaries as

(2)

Based on (1) and (2), an efficient matrix algorithm for the eigen-
resonance problem is developed in the following.

It is found from (1) and (2) that

(3)

where denotes the unit matrix. A nontrivial solution requires
the frequency-dependent matrix in (3) to be singular. All ele-
ments of depend on the frequency. As the matrix is sparse
but large, the search for the singularity becomes rather involved:
the calculation of the smallest singular value (which should be-
come zero) or the condition number (which should become in-
finite) are computationally very time consuming, and the calcu-
lation of the determinant (which should become zero) quickly
leads to numerical underflow. In the following, a stable and eco-
nomic way is proposed to detect the frequency of singularity.

III. CAVITY RESONANCE FREQUENCY ALGORITHM

Consider first a resonator with homogeneous dielectric,
regularly meshed with cubic nodes. In this particular case, all
entries of have the same frequency dependence, namely

, where is the wavenumber and denotes
the geometric dimension of the node. From

(4)

where denotes the scattering matrix at the node center,
and the multiplication denoted by the asterisk is element-wise,
it is found that

(5)

Equation (5) can be solved for the eigenvalue , from which the
resonance frequency is readily found. However, it is numerically
much faster to find the eigenvalue with the smallest magnitude,

. To that end, (5) reads

(6)

where is the scattering matrix at some guess frequency
. A guess can be found either from some a priori information,
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from a coarse mesh run, or simply taken zero. After solving (6)
for the eigenvalue , the resonance frequency is given as

(7)

The better the guess frequency, , the smaller the magnitude of
. The fundamental and the lower resonances of a resonator

correspond to the smallest eigenvalues of (6) and can be found
quickly by using an iterative eigensolver. Note that each phys-
ical resonance mode is accompanied by a nonphysical solution
due to the nature of the TLM approach. Following the method
described in [5], spurious solutions are detected easily by cal-
culating the fields at the center of a few nodes.

For a loss-free system, the resonance frequencies are purely
real. Considering losses, however, adds an imaginary part to the
frequency. The -factor of a low-loss resonance mode is then
found from

imag (8)

Since is small, its Taylor series expansion [from (7)] for
small frequency offsets gives

(9)

Thus, in the neighborhood of a resonance frequency,
is a linear function of frequency, and

is a quadratic function. Thus, can be approximated by
a parabola in the complex plane.

It is important to note that for a practical problem, a graded
mesh will be used, the resonator may contain dielectric inter-
faces, and materials as well as boundaries may be lossy. Then,
the frequency dependence cannot be extracted anymore as it
has been done in (4). Fortunately, it turns out, however, that

is still an “almost linear” function of frequency
in a rather wide range in the vicinity of a resonance frequency.
As a result, solving (6) for two guess frequencies, , , allows
to find a much improved frequency, , by simple linear inter-
polation. This feature makes the search for the singularity very
efficient.

IV. CAVITY RESONATOR

Consider first a simple, air-filled, cubic cavity resonator of
size 40 mm made of brass ( S/m). Theoreti-
cally, this resonator has a three-fold degenerated fundamental
resonance at 5300 MHz with a -factor of 7642. A rough mesh
with 64 cubic FDTLM nodes of size 10 mm (without using
symmetries) will give a six-fold singularity (three physical and
three spurious solutions) corresponding to MHz
( 1.3%) and ( 2.3%). In this example, the rough
mesh is of course responsible for the poor accuracy.

V. DIELECTRIC RESONATOR

The second example is a brick-shaped, high-permittivity di-
electric resonator in a perfectly conducting, air-filled cavity. The

Fig. 1. Dielectric brick resonator centered in an air-filled, metallic cavity.
Symmetry planes cut the computational domain by eight. The dotted lines
show a rough initial mesh with 18 FDTLM node cells. Each of these cells is
subsequently divided in 2 and 4 cells, respectively.

drawing in Fig. 1 shows the resonator ( ) of size 30
25 5 mm , centered in a cavity of size 50 50 15 mm .

The fundamental resonating mode of the dielectric resonator
resembles the TM mode of a magnetic-wall rectangular
waveguide cavity. Three symmetry planes can be applied.
With a finite-element solver, the resonance frequency of the
fundamental mode is found at 1930.6 MHz (next higher mode
at 2203.3 MHz).

In order to find the resonance frequencies using the FDTLM
method, one starts with a frequency sweep on a rough mesh,
which detects all singularities with low accuracy. Then, the test
of spurious solutions [5] allows to cross-out nonphysical reso-
nances. Finally, using a fine mesh, the accurate resonance fre-
quencies are found in the vicinity of the previously detected,
physical, low-accuracy singularities.

For the example resonator, the initial search on a mesh of 6
6 4 144 nodes gives singularities near 1460 MHz and 1900
MHz. The former resonance is nonphysical, whereas the latter
resonance is physical.

In a second step, the accurate resonance frequency will
be found using a fine mesh (12 12 8 1152 nodes) in
the neighborhood of 1900 MHz. The eigenvalue algorithm
described above allows to find an eigenvalue effi-
ciently by linearly interpolating over frequency.
Although this is a linear function only for a cubic mesh and
a homogeneous computational domain, it is still an “almost
linear” function in the neighborhood of a resonance for a
resonator with high dielectric contrast and noncubic node cells.

Two possible iteration paths are presented in Table I. Ex-
perience shows that a rough mesh underestimates the “true”
resonance frequency. After having solved the eigenvalue
problem for only three different frequencies, the linear inter-
polation process gives the accurate solution within reasonable
limits. Note that for this mesh, the singularity at 1921.5 MHz
is 0.47% off the “true” resonance.

Air-filled cavities or resonators employing low-permittivity
dielectrics will show a much wider frequency band in which
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TABLE I
TWO EXAMPLES FOR ITERATING Im(� (f)) = 0 USING LINEAR

INTERPOLATION. IN BOTH CASES, THE EIGENVALUE PROBLEM IS SOLVED AT 3
FREQUENCIES. THE THIRD COLUMN SHOWS THE ERROR WITH RESPECT

TO THE SINGULARITY AT 1921.472 MHz

is an “almost linear function,” such that the eigen-
value problem might have to be solved only twice.

VI. CONCLUSIONS

An algorithm for the calculation of eigenresonances (fre-
quencies, -factors) using the FDTLM method has been
described. The problem has been cast as a sparse standard
eigenvalue problem. This allows to analyze real-world, large
structures by using modern eigenvalue solvers. An interesting
feature of the FDTLM method has been described which gives
a significant speed-up of the iterative solving process. A cavity
resonator and a dielectric resonator were discussed as example
structures.
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