190

IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 5, MAY 2003

Resonance Freguencies Calculated Efficiently With
the Frequency-Domain TLM Method

Jan Hesselbarth, Associate Member, |EEE, and Rudiger Vahldieck, Fellow, |IEEE

Abstract—An algorithm ispresented for thecalculation of eigen-
resonances using the frequency-domain TLM method. It is based
on sparse matrices and allows the computationally efficient treat-
ment of large structures. The numerical effort and the accuracy of
the solutions are discussed using two example structures.

Index Terms—Eigenvalues and eigenfunctions, freguency
domain analysis, microwave resonators, transmission line matrix
methods.

I. INTRODUCTION

N THE FIELD of microwave circuit design, the determina-

tion of resonance modesand quality factorsof resonatorsisa
standard though sometimes difficult task. Utilizing a numerical
method will usualy lead to an eigenvalue problem. Recently,
efficient methods have been developed to solve large linear,
sparse eigenvalue problems [1]. Still, the number of unknowns
islimited and the numerical cost isoften rather large. Therefore,
the numerical method used to approximate the el ectromagnetic
fieldsin the resonator should give as accurate results as possible
for the smallest number of unknowns. Furthermore, the numer-
ical cost of actually finding a resonance mode with a certain
accuracy hasto be analyzed carefully.

Inthefollowing, the frequency-domain transmission-linema-
trix (FDTLM) method [2], [3] is used for analyzing resonators
in terms of resonance frequencies and Q-factors. A matrix algo-
rithm is discussed which leads to a standard sparse eigenvalue
problem. This eigenvalue problem is particularly easy to solve
due to a specific feature of the FDTLM approach.

II. FDTLM METHOD

Inthe FDTLM method, a brick-shaped homogeneous part of
the computational domain is represented by the symmetrical
condensed node (SCN) [4]. The SCN is mathematically de-
scribed by a node scattering matrix of size 12 x 12 relating
a vector of incident voltage waves and a vector of reflected
voltage waves. The combination of the node scattering matrices
of all SCN in the computational domain in the block-diagonal
matrix [S] leads to

(vred) = [8]- (v) &
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Hereby, [S] is a square matrix of size 12 N,, 4., Where N, 4.
denotes the number of SCN. The connection matrix connects
neighboring SCN’s and boundaries as
(Vznc) _ [C] 3 (Vref) ) (2)
Based on (1) and (2), an efficient matrix algorithm for the eigen-

resonance problem is devel oped in the following.
It isfound from (1) and (2) that

{lE1-[81-[C1}y - (V™) = (0)

where[E] denotesthe unit matrix. A nontrivial solution requires
the frequency-dependent matrix in (3) to be singular. All ele-
ments of [S] depend on the frequency. As the matrix is sparse
but large, the search for the singularity becomesrather involved:
the calculation of the smallest singular value (which should be-
come zero) or the condition number (which should become in-
finite) are computationally very time consuming, and the cal cu-
lation of the determinant (which should become zero) quickly
leadsto numerical underflow. In thefollowing, astable and eco-
nomic way is proposed to detect the frequency of singularity.

©)

I1l. CAVITY RESONANCE FREQUENCY ALGORITHM

Consider first a resonator with homogeneous dielectric,
regularly meshed with cubic nodes. In this particular case, all
entries of [S] have the same frequency dependence, namely
exp (—jkmA/2), where k,,, isthe wavenumber and A denotes
the geometric dimension of the node. From

[S] = exp (—jkn A/2) + [ S] 4
where [™**" S| denotes the scattering matrix at the node center,
and the multiplication denoted by the asterisk is element-wise,
it is found that

I:centerS:I 3 [C] 3 (Vref) =\ (Vref) ) (5)
Equation (5) can be solved for the eigenvalue A, from which the
resonancefrequency isreadily found. However, itisnumerically
much faster to find the eigenvalue with the smallest magnitude,
Amin- TO that end, (5) reads
{E] =[S U -[C1}- (V") = A - (V™) (6)
where [S (fo)] is the scattering matrix at some guess frequency
fo. A guess can befound either from some a priori information,
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from a coarse mesh run, or simply taken zero. After solving (6)
for the eigenvalue A,..;,, the resonance frequency is given as

hl(]- - )\Inin)
FLIANYTE

The better the guessfrequency, fo, the smaller the magnitude of
Amin. Thefundamental and the lower resonances of aresonator
correspond to the smallest eigenvalues of (6) and can be found
quickly by using an iterative eigensolver. Note that each phys-
ical resonance mode is accompanied by a nonphysical solution
due to the nature of the TLM approach. Following the method
described in [5], spurious solutions are detected easily by cal-
culating the fields at the center of afew nodes.

For aloss-free system, the resonance frequencies are purely
real. Considering losses, however, adds an imaginary part to the
frequency. The Q-factor of alow-loss resonance mode is then
found from

f1‘65:f0+Af:f0+ (7)

Q = 0.5|fres| /[ limag (fres)| - (8

Since Anin 1S small, its Taylor series expansion [from (7)] for
small frequency offsets A f gives

Amin = & (TAVeR)? - (Af)? = j (rAVeR) - (Af) . (9)

Thus, in the neighborhood of a resonance frequency,
In( A win(f)) isalinear function of frequency, and Re( Apin(f))
isaquadratic function. Thus, A, (f) can be approximated by
a parabolain the complex plane.

It is important to note that for a practical problem, a graded
mesh will be used, the resonator may contain dielectric inter-
faces, and materials as well as boundaries may be lossy. Then,
the frequency dependence cannot be extracted anymore as it
has been done in (4). Fortunately, it turns out, however, that
Im(Amin(f)) is still an “amost linear” function of frequency
in a rather wide range in the vicinity of a resonance frequency.
Asaresult, solving (6) for two guess frequencies, f;, f2, alows
to find a much improved frequency, fs, by simple linear inter-
polation. This feature makes the search for the singularity very
efficient.

IV. CAVITY RESONATOR

Consider first a simple, air-filled, cubic cavity resonator of
size 40 mm made of brass (¢ = 15.7 x 10° S/m). Theoreti-
cally, this resonator has a three-fold degenerated fundamental
resonance at 5300 MHz with a Q-factor of 7642. A rough mesh
with 64 cubic FDTLM nodes of size 10 mm (without using
symmetries) will give asix-fold singularity (three physical and
three spurious solutions) corresponding to f,.., = 5230 MHz
(—1.3%) and @ = 7818 (+2.3%). In this example, the rough
mesh is of course responsible for the poor accuracy.

V. DIELECTRIC RESONATOR

The second example is a brick-shaped, high-permittivity di-
electric resonator inaperfectly conducting, air-filled cavity. The

Fig. 1. Dielectric brick resonator centered in an air-filled, metallic cavity.
Symmetry planes cut the computational domain by eight. The dotted lines
show a rough initial mesh with 18 FDTLM node cells. Each of these cellsis
subsequently divided in 2° and 4° cells, respectively.

drawing in Fig. 1 shows the resonator (z,..; = 80) of size 30 x
25 x 5mm?, centered in a cavity of size 50 x 50 x 15 mm?.

The fundamental resonating mode of the dielectric resonator
resembles the TMyo; mode of a magnetic-wall rectangular
waveguide cavity. Three symmetry planes can be applied.
With a finite-element solver, the resonance frequency of the
fundamental mode is found at 1930.6 MHz (next higher mode
at 2203.3 MHz).

In order to find the resonance frequencies using the FDTLM
method, one starts with a frequency sweep on a rough mesh,
which detects all singularities with low accuracy. Then, the test
of spurious solutions [5] allows to cross-out nonphysical reso-
nances. Finally, using a fine mesh, the accurate resonance fre-
quencies are found in the vicinity of the previously detected,
physical, low-accuracy singularities.

For the exampleresonator, theinitial search on amesh of 6 x
6 x 4 = 144 nodes gives singularities near 1460 MHz and 1900
MHz. The former resonance is nonphysical, whereas the latter
resonance is physical.

In a second step, the accurate resonance frequency will
be found using a fine mesh (12 x 12 x 8 = 1152 nodes) in
the neighborhood of 1900 MHz. The eigenvalue algorithm
described above alows to find an eigenvalue A\, = 0 €ffi-
ciently by linearly interpolating Lim(\,.in(f)) over frequency.
Although this is a linear function only for a cubic mesh and
a homogeneous computational domain, it is still an “amost
linear” function in the neighborhood of a resonance for a
resonator with high dielectric contrast and noncubic node cells.

Two possible iteration paths are presented in Table |. Ex-
perience shows that a rough mesh underestimates the “true’
resonance frequency. After having solved the eigenvalue
problem for only three different frequencies, the linear inter-
polation process gives the accurate solution within reasonable
limits. Note that for this mesh, the singularity at 1921.5 MHz
is 0.47% off the “true”’ resonance.

Air-filled cavities or resonators employing low-permittivity
dielectrics will show a much wider frequency band in which
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TABLE |
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TwO EXAMPLES FOR ITERATING Im(Amin(f)) = 0 USING LINEAR
INTERPOLATION. IN BOTH CASES, THE EIGENVALUE PROBLEM IS SOLVED AT 3
FREQUENCIES. THE THIRD COLUMN SHOWS THE ERROR WITH RESPECT

TO THE SINGULARITY AT 1921.472 MHz

first guess f; fi = 1900 MHz ~1.12 %
second guess f, f, = 1930 MHz +0.44 %
interpolating f, , £, | f;=1916.126 MHz | -0.28 %
interpolating £, , f; | fies = 1921.657 MHz 10.0092;
first guess f; f,=1910 MHz -0.60 %
second guess f; f,=1920 MHz -0.08 %
interpolating f; , f, | f;=1923.145 MHz ;(109 %
interpolating f; , fy | fis=1921.476 MHz | +0.0002 %

Im(Amin(f)) isan“amost linear function,” such that the eigen-
value problem might have to be solved only twice.

V1. CONCLUSIONS

An algorithm for the calculation of eigenresonances (fre-
guencies, @Q-factors) using the FDTLM method has been
described. The problem has been cast as a sparse standard
eigenvalue problem. This alows to analyze real-world, large
structures by using modern eigenvalue solvers. An interesting
feature of the FDTLM method has been described which gives
a significant speed-up of the iterative solving process. A cavity
resonator and a dielectric resonator were discussed as example
structures.
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